#version 450 layout (location = 0) in vec3 inWorldPos; layout (location = 1) in vec3 inNormal; layout (set = 0, binding = 0) uniform UBO { mat4 projection; mat4 model; mat4 view; vec3 camPos; } ubo; // Inline uniform block layout (set = 1, binding = 0) uniform UniformInline { float roughness; float metallic; float r; float g; float b; float ambient; } material; layout (location = 0) out vec4 outColor; const float PI = 3.14159265359; vec3 materialcolor() { return vec3(material.r, material.g, material.b); } // Normal Distribution function -------------------------------------- float D_GGX(float dotNH, float roughness) { float alpha = roughness * roughness; float alpha2 = alpha * alpha; float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0; return (alpha2)/(PI * denom*denom); } // Geometric Shadowing function -------------------------------------- float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float GL = dotNL / (dotNL * (1.0 - k) + k); float GV = dotNV / (dotNV * (1.0 - k) + k); return GL * GV; } // Fresnel function ---------------------------------------------------- vec3 F_Schlick(float cosTheta, float metallic) { vec3 F0 = mix(vec3(0.04), materialcolor(), metallic); // * material.specular vec3 F = F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); return F; } // Specular BRDF composition -------------------------------------------- vec3 BRDF(vec3 L, vec3 V, vec3 N, float metallic, float roughness) { // Precalculate vectors and dot products vec3 H = normalize (V + L); float dotNV = clamp(dot(N, V), 0.0, 1.0); float dotNL = clamp(dot(N, L), 0.0, 1.0); float dotLH = clamp(dot(L, H), 0.0, 1.0); float dotNH = clamp(dot(N, H), 0.0, 1.0); // Light color fixed vec3 lightColor = vec3(1.0); vec3 color = vec3(0.0); if (dotNL > 0.0) { float rroughness = max(0.05, roughness); // D = Normal distribution (Distribution of the microfacets) float D = D_GGX(dotNH, rroughness); // G = Geometric shadowing term (Microfacets shadowing) float G = G_SchlicksmithGGX(dotNL, dotNV, rroughness); // F = Fresnel factor (Reflectance depending on angle of incidence) vec3 F = F_Schlick(dotNV, metallic); vec3 spec = D * F * G / (4.0 * dotNL * dotNV); color += spec * dotNL * lightColor; } return color; } // ---------------------------------------------------------------------------- void main() { vec3 N = normalize(inNormal); vec3 V = normalize(ubo.camPos - inWorldPos); float roughness = material.roughness; // Specular contribution vec3 lightPos = vec3(0.0f, 0.0f, 10.0f); vec3 Lo = vec3(0.0); vec3 L = normalize(lightPos.xyz - inWorldPos); Lo += BRDF(L, V, N, material.metallic, roughness); // Combine with ambient vec3 color = materialcolor() * material.ambient; color += Lo; // Gamma correct color = pow(color, vec3(0.4545)); outColor = vec4(color, 1.0); }